Vidyavardhini's College of Engineering and Technology

Sample Paper TE Mechanical/ (R-2016)/ semester V/ Heat Transfer/ University of Mumbai Online Examinations January 2021
Section 1: Personal details
Section 2: MCQ (20 question 2 marks each, all compulsory)

Q1.	The radial heat transfer rate through hollow cylinder increases as the ratio of outer radius to inner radius (a) decreases (b) increases (c) constant (d) none of the above.
	Answer: a
Q2	Conduction is a process of heat transfer from (a) a hot body to a cold body, in a straight line, without affecting the intervening medium (b) one particle of the body to another without the actual motion of the particles (c) one particle of the body to another by the actual motion of the heated particles (d) none of the above.
	Answer: b
Q3	The overall coefficient of heat transfer is used in the problems of (a) radiation (b) conduction (c) convection (d) conduction and convection.
	Answer: d
Q4	If k is the thermal conductivity, ρ is the mass density and c is the specific heat then the thermal diffusivity of substance is given by (a) $\frac{\rho c}{k}$ (b) $\frac{k}{\rho c}$ (c) $\frac{k c}{\rho}$ (d) $\frac{k \rho}{c}$.
	Answer: b

Q5	In transient heat conduction, the two significant dimensionless parameters are \qquad number and \qquad number. (a) Fourier, Reynolds (b) Reynolds, Prandtl (c) Biot, Fourier (d) Reyonlds, Biot.
	Answer: d
Q6	The degree of approach, in heat exchangers, is defined as the difference between temperatures of (a) hot medium outlet and cold water outlet (b) hot medium outlet and cold water inlet (c) cold water inlet and outlet (d) hot medium inlet and outlet.
	Answer: a
Q7	\qquad is the ratio of total emissive power of body to total emissive power of a black body at the same temperature. (a) Emissivity (b) Absoptivity (c) Transmissivity (d) Reflectivity.
	Answer: a
Q8	For infinite parallel planes with emissivities e_{1} and e_{2}, the interchange factor for radiation from surface 1 to surface 2 is (a) $\frac{1}{\varepsilon_{1}+\varepsilon_{2}}$ (b) $\varepsilon_{1}+\varepsilon_{2}$ (c) $\varepsilon_{1}-\varepsilon_{2}$ (d) $\frac{\varepsilon_{1} \varepsilon_{2}}{\varepsilon_{1}+\varepsilon_{2}-\varepsilon_{1} \varepsilon_{2}}$.
	Answer: d

Q9	The relationship $\lambda_{\max } T=$ constant, between the temperature of a black body and the wavelength at which maximum value of monochromatic emissive power occurs is known as \qquad law. (a) Lambert's (b) Kirchhoff's (c) Planck's (d) Wien's displacement.
	Answer: d
Q10	With regard to 'Fouling factor' which of the following statements is correct? (a) It is used when a liquid exchanges heat with a gas (b) It is used only in case of Newtonian fluids (c) It is dimensionless (d) It is virtually a factor of safety in heat exchanger design.
	Answer: d
Q11	Grashoff number has significant role in heat transfer by \qquad (a) conduction (b) radiation (c) natural convection (d) forced convection.
	Answer: c
Q12	In convective heat transfer, the Nusselt number (a) represents the ratio of viscous to inertia force (b) signifies the velocity gradient at the surface (c) is the ratio of molecular momentum diffusivity to thermal diffusivity (d) is the ratio of conduction to convection resistance.
	Answer: d

Q13	In case of laminar flow over a plate, the convective heat transfer co-efficient (a) decreases with increase in free stream velocity (b) increases with distance (c) increases if a higher viscosity fluid is used (d) increases if a denser fluid is used.
	Answer: d
Q14	Conduction through hollow, radial one dimensional heat transfer is expressed as (a) $Q=\frac{2 \pi l\left(t_{1}-t_{2}\right) k}{\log _{e} r_{2} / r_{1}}$ (b) $Q=\frac{2 \pi l\left(t_{1}-t_{2}\right)}{k\left(r_{2}-r_{1}\right)}$ (c) $Q=\frac{2 \pi l \log _{e}\left(t_{1} / t_{2}\right)}{\left(r_{2}-r_{1}\right) k}$ (d) $Q=\frac{2 \pi l\left(t_{1}-t_{2}\right) k}{\log _{e} r_{2} / r_{1}}$.
	Answer: a
Q15	For spheres, the critical thickness of insulation is given by (a) $\frac{h}{2 k}$ (b) $\frac{2 k}{h}$ (c) $\frac{k}{h}$ (d) $\frac{k}{2 \pi h}$ where $k=$ thermal conductivity, $h=$ convective heat transfer coeffecient.
	Answer: b

Q16	Compared to parallel flow heat exchanger, LMTD in case of counter-flow heat exchanger is (a) lower (b) higher (b) same (d) unpredictable.
	Answer: b
Q17	In \qquad flow maximum heat transfer rate can be expected. (a) laminar (b) turbulent (c) counter current (d) co-current.
	Answer: b
Q18	Why are baffles provided in heat exchangers ? (a) To reduce heat transfer rate (b) To increase heat transfer rate (c) To remove dirt (d) To reduce vibrations.
	Answer: b
Q19	On which of the following factors does the heat flux in nucleate pool boiling depend? (a) Material of the surface only (b) Material and roughness of the surface (c) Liquid properties and material of the surface (d) Liquid properties, material and condition of the surface.
	Answer: d
Q20	Which of the following terms does not pertain to radiation heat transfer? (a) Configuration factor (b) Spectral distribution (c) Solid angle (d) Reynolds analogy.
	Answer: d
Section 3: Attempt any 4 out of 5. (10 marks each)	
Q1) A longitudinal copper fin ($\mathrm{k}=380 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$) 600 mm long and 5 mm diameter is exposed to air stream at $20^{\circ} \mathrm{C}$. The convective heat transfer coefficient h is $20 \mathrm{~W} / \mathrm{m}^{2 \circ} \mathrm{C}$. If the fin base temperature is $150^{\circ} \mathrm{C}$,	

determine: i) the heat transferred in kJ / h and ii) the efficiency of the fin. Assume that fin is insulated at the tip.

Q2) Air at $27^{\circ} \mathrm{C}$ is flowing across a tube with a velocity of $25 \mathrm{~m} / \mathrm{s}$. The tube could be either a square of 5 cm side or a circular cylinder of 5 cm diameter.
Compare:
the rate of heat transfer in each case, if the tube surface is at $127^{\circ} \mathrm{C}$.
Use Nu= $\mathrm{C}(\operatorname{Re})^{\mathrm{n}}(\operatorname{Pr})^{1 / 3}$.,
Where, $\mathrm{C}=0.027$, $\mathrm{n}=0.805$ for cylinder, $\mathrm{C}=0.102, \mathrm{n}=0.675$ for square tube.
Properties of air at $77^{\circ} \mathrm{C}$, $\rho=0.955 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{k}_{\mathrm{f}}=0.03 \mathrm{~W} / \mathrm{mk} . \mathrm{K}, \mathrm{v}=20.92 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}, \operatorname{Pr}=0.7, \mathrm{C}_{\mathrm{p}}=1.009 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$.

Q3) Show by dimensional analysis for forced convection, $\mathrm{Nu}=\varnothing$ (Re, Pr$)$

Q4) Steam in a condenser of a steam power plant is to be condensed at a temperature of $30^{\circ} \mathrm{C}$ with a cooling water from nearby lake, which enters the tube of condenser at $14^{\circ} \mathrm{C}$ and leaves at $22^{\circ} \mathrm{C}$. The surface area of the tubes is $45 \mathrm{~m}^{2}$ and an overall heat transfer coefficient is $2100 \mathrm{~W} / \mathrm{m}^{2}$.K. Calculate the mass flow rate of cooling water needed and rate of steam condensation in the condenser. Treat the condenser as counter flow heat exchanger. C_{p} of water at $18^{\circ} \mathrm{C}$ is $4.18 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$ and latent heat of vaporization at $30^{\circ} \mathrm{C}$ if $\mathrm{h}_{\mathrm{fg}}=2430.5 \mathrm{~kJ} / \mathrm{kg}$.

Q5) Calculate the net radiant heat exchange per m^{2} area for two parallel plates of temperature $427^{\circ} \mathrm{C}$ and $27^{\circ} \mathrm{C}$ respectively ε (hot plate) $=0.9$ and ε (cold plate) $=0.6$. If a polished aluminum shield is placed between them, find the \% reduction in heat transfer: $\varepsilon($ shield)=0.4.

